EVALUATION OF EXISTING RAPID SCREENING PROCEDURES This section evaluates the previously discussed RSPs and studies according to several broad categories. Because each method/study reviewed was unique in some aspects, the following broad categories within which to compare and comment on the detailed aspects were defined: - Organizational - Structural - Configuration - · Site and Non-structural - Personnel These five broad categories were selected as being of greatest interest to one or several segments of the target audience. To facilitate comparison, a tabular format has been used. Within each category specific items were noted, as were whether a specific RSP method or study addressed this issue, employed this data item, or simply noted this item. Where an entry is blank, no information was available. Organizational—Refers to the general aspects of an RSP method or study that would be of interest to a person or organization implementing and managing a survey of a community. These include items such as the size of the survey defined by number of buildings, population and/or area; the types of buildings that were targeted; and whether graphic methods (sketches or photos) were used to record data. Structural—Refers to structure-specific data items that would be of most interest and use to a structural engineer (e.g., age, structural material). Configuration —Includes items such as whether an RSP method or study specifically noted soft stories or irregular building configuration. This would be of interest and use to architects and engineers. Site and Non-Structural—Includes items related to the site (e.g., soil conditions, potential for pounding), and to the non-structural aspects of a building that may either pose a hazard (e.g., parapets) or may affect structural behavior (e.g., infill walls). Personnel—Addresses two aspects regarding the qualifications of the personnel who would employ the specific RSP or study being evaluated: (1) What were the backgrounds or qualifications of the personnel who conducted the study or for whom the method was intended? (2) Could the method be applied by each or any segment of the target audience? After reviewing all the existing surveys and available data, it becomes clear that there is currently relatively little statistical information relating damage to all types of structures under different levels of earthquake loading. Although general statements about the behavior of buildings in earthquakes can be made, it is difficult to quantify the damage. Even general statements about vulnerability based on building type are subject to question because so many other aspects such as configuration, connection detailing or local site conditions can contribute to poor structural performance. Reitherman (1985) noted that architectural configuration can be quite different from structural configuration and thus can be very misleading without access to structural drawings. Structural detailing, which can be so critical to good performance, is difficult to "score" from purely visual inspections. For these reasons, the results of an RSP cannot be regarded as definitive, and structural adequacy or lack thereof can only be determined on the basis of detailed examination by a registered professional engineer. #### 4.1 Organizational Aspects Table 1 presents the evaluation of the organizational aspects of the various methods/studies. Specific items considered are discussed below. Building Groups Targeted: Most methods or studies begin by eliminating some building types as non-hazardous (e.g., woodframe construction), and limiting themselves to simply identifying that building type considered "most hazardous" (e.g., URM), or they have a well-defined list of structural types in their evaluation methodology. This report identifies those building types that were addressed. Survey Area: In the case of studies where buildings in a community were actually screened, some measure of the size of the project, such as number of buildings, area, population, or other measure, is indicated. Number of Hazardous Buildings Identified: As above, where available, the number of hazardous buildings actually identified for the particular study is indicated. Method: A brief description of whether the method/study (i) simply employed a pass/fail measure (e.g., is or is not URM), or (ii) employed subjective measures and techniques (e.g., has a soft story, is irregular) without quantifying these items, or (iii) employed numerical scoring schemes and algorithms for combining information to arrive at a quantified measure (e.g., tension-only bracing or long-span diaphragms are given weights and these are "scored" in some fashion). Supplemental Information Employed: Was non-visual off-site information employed, such as from building department, assessor files, Sanborn maps, or previous studies? Explicit Earthquake Definition: Was the "earthquake loading" explicitly defined? Many times a method/study determined that buildings were seismically hazardous without clearly defining what ground motions the building was being compared against. Admittedly, for a specific jurisdiction this might be implicitly clear (e.g., a repeat of the 1906 event for San Francisco), but this aspect would need clear definition for any general RSP. Sketch or Photo: Sketches or photos as an integral part of the data recording are invaluable for later reference. Requiring sketches assures that the survey personnel methodically observe the building. ### 4.2 Structural Aspects Table 2 presents an evaluation of the methods/studies for the structural aspects. Specific items considered are discussed below. Age/Design Level/Building Practice: Building age is usually an explicit indicator of the design level or the code under which the building was designed, and the building practices prevalent at the time of construction. State of Repair: Maintenance and general conditions are important aspects of structural adequacy since corrosion and deterioration decreases structural capacity. Occupancy Factor Definition: Occupancy is not an explicit factor in structural adequacy, but is important in setting priorities. Material Groups: Broad structural material groupings can be noted in a variety of ways, and are a basic measure of seismic capacity. Number of Stories/Dimensions: Number of stories and/or the plan or other dimensions are a broad indicator of structural dynamic properties, as well as of value. Symmetrical Lateral Force Resisting System: The degree of symmetry of the lateral force resisting systems (LFRS) is an important clue as to adequacy of load path. If this was an item of interest to the survey team, what guidelines were they given for identifying the LFRS? If noted, how was the degree of symmetry employed? Member Proportions: Were these noted in any way? Relatively thin member proportions are a general indication of potential problems in connections and/or member stability and, for concrete members, usually indicate non-ductile detailing. Sudden Changes in Member Dimensions: Drastic changes in column dimensions can sometimes be observed through windows, and would indicate upper story "softness." Were these noted? Tension-only Bracing: Was this relatively non-ductile behaving system identified as an item to note if observed? Connections Noted: Was any attention paid to connections, as for example whether special wall/diaphragm ties were present in bearing-wall systems (e.g., tilt-up, URM)? Previous Earthquake Damage: In areas where previous earthquakes might have weakened a building, was any attempt made to look for indications of this damage? Renovated: Was there any indication that the building had been renovated, either with regard to architectural (thus obscuring the age) or structural details? ## 4.3 Configuration Aspects Table 3 presents an evaluation of the methods/studies for the configuration aspects. Specific items considered are discussed below. Soft Story: Abrupt changes and/or decrease in stiffness in lower stories of a building lead to large story drifts that cannot be accommodated. Was this consideration incorporated into the determination of seismic hazard, or was it noted by survey personnel but not used? Similarly, were plan irregularity, vertical irregularity, excessive openings and aspect ratio of the building or its components (vertical or horizontal) considered? Corner Building: Buildings on corners typically have potential torsional problems due to adjacency of two relatively infilled back walls, and two relatively open street facades. #### 4.4 Site and Non-structural Aspects Table 4 presents an evaluation of the methods/studies for the site and non-structural aspects. Specific items considered are discussed below. Site-Related: So-called "adjacency" problems of pounding and/or the potential for a neighboring building to collapse onto the subject building are important structural hazards. These are two aspects that can be easily observed from the street and that the 1985 Mexico City experience again emphasized as critical. These were placed under site-related rather than structural or configuration because they involve aspects that are more related to the site and adjacent buildings than to the subject building per se. Soil conditions or potential for seismic hazards other than shaking, such as landslide or liquefaction, are also very significant factors related as much to the site as to the structure. Admittedly, these non-shaking hazards may more easily be defined on the basis of reference maps than in the field, but in the methods reviewed were these given any consideration at all? Were soft soil/tall building or stiff site/stiff building correlations attempted as a crude measure of resonance/long period potential? Non-Structural: Were major infill walls and/or interior partitions and their potential effects on structural behavior, especially in light buildings, noted? Were the special and relatively obvious seismic hazards of cornices, parapets, chimneys and other overhanging projections noted? #### 4.5 Personnel Aspects Table 5 presents an evaluation of the methods/studies for the personnel aspects. For most projects, cost information was difficult to obtain and was usually based on criteria that are not easily compared. Some data provided included clerical and report production costs. others only the costs of survey personnel. This report provides personnel time per building reported for a particular RSP. By multiplying by labor cost, and including other expenses such as transportation and report production costs, the reader can estimate what a particular RSP would cost if applied to a particular community. Whether or not the particular RSP is appropriate for use by each segment of our target audience is indicated (by Y or N). #### 4.6 State of the Practice Information provided by about a dozen practicing structural engineering firms, mostly in California, indicates that no rapid visual screening procedure is currently being used by practitioners. Typically, structural engineers have used visual screening procedures as a preliminary phase of a more detailed analysis. However, because most of the procedures involved entrance into buildings and detailed inventories of structural elements and non-structural elements, these procedures do not fit the definition of "rapid visual screening" utilized herein. "Subjective judgment" is the type of criteria used most extensively to classify seismically hazardous buildings; in only a few cases have quantitative criteria been developed. However, in most cases, studies have been for planning purposes, and engineers have tried to include some qualitative indicator of the degree of hazard of the building to assist in setting priorities for mitigation procedures. In general, the surveys have been performed by experienced engineers or by entry-level engineers accompanied by a more experienced engineer. Most often, junior personnel have been given brief training as to what to look for and a checklist or data collection form, usually without detailed written guidelines. In some cases, a trial run through a building with the data collection forms was performed under the supervision of an experienced engineer. Usually there were no structured guidelines for identifying a building as one structural type or another, nor was there any consistent way to incorporate the uncertainty in the judgments that were made. Consequently, the variability in backgrounds and experience of the personnel and the lack of detailed guidelines can result in widely differing interpretations of the criteria for identifying hazardous buildings and hence produce inconsistent results. #### 4.7 Conclusions The foregoing review indicates that no currently available RSP method or study addresses all of the major aspects fundamental to seismic hazard, and further that no really satisfactory RSP method or procedure exists. Most omit many of the described aspects, and/or are very subjective in their treatment of the data recorded. In many cases, too much reliance is placed on the experience of the survey personnel, with little attention paid to consistency among different personnel. Further, although the personnel may have been given some coaching or training in what to look for, this was usually unsystematic and omitted major aspects. Most of the rapid visual screening procedures that were reviewed were developed for a particular municipality and thus were applied in only one geographic region. None addresses the issues of regional differences in construction practices and building code regulations. The multihazard study (Reitherman et al., 1984), NBS 61 (Culver et al., 1975) and the Navy Rapid Seismic Analysis Procedure are designed for nationwide application, but these procedures do not specifically discuss differences in building performance that might result from regional engineering and construction practices. In addition, they involve entrance into the building or calculations and thus are too detailed for an RSP. From the studies that were reviewed and from experience with earthquake-related damage, a set of attributes of a satisfactory RSP method was developed: - 1. The earthquake loading against which the building's capacity is being judged should be explicitly defined, preferably in physically based units (e.g., acceleration). The anticipated earthquake loading is defined in several of the studies such as NBS 61, the Stanford Project, the University of California Study, the OSA Hospital Survey, the New Madrid Study and the Multihazard Survey; however, non-physical units such as UBC zone or MMI are used. Only in Wiggins and Moran (1971), and Wiggins and Taylor (1986) is the use of maximum expected bedrock acceleration discussed. Because the decision of what ground motion a building should satisfactorily withstand involves not only geotechnical and seismological issues but also difficult questions of acceptable risk, the "acceptable earthquake" may often be decided in an iterative fashion. Thus, sufficient building-specific data should be clearly recorded to permit later calculations for the purposes of rescreening, given a different "earthquake loading." - 2. As much as possible, supplemental information compiled from building department and assessor's files, Sanborn maps and other sources should be collated and taken into the field in a - usable format, such as computer listings or peel-off labels that can be affixed to the survey form, for verification as well as aiding the field personnel. Most of the methods that were reviewed use other sources of information to supplement the visually obtained data. - 3. An RSP should have the capability to survey and identify hazardous buildings of all types. In some cases, jurisdictions may wish to use the RSP in a limited form for certain "high hazard" target buildings or areas. However, all building groups should receive at least an initial limited-sample-area test screening to verify assumptions of which building type is the most hazardous within the local building stock. If these assumptions are verified, then selected building groups/areas may be targeted for reasons of economy. However, the situation of having identified all URM buildings, and having no idea of the seismic hazards in the older non-ductile reinforced concrete building group, for example, or the older unbolted house-over-garage (HOG) building group, should be avoided. - 4. A quantitative approach, as exemplified in the Long Beach study (Wiggins and Moran, 1971) or NBS61 (Culver et al., 1975), appears preferable, as it not only permits pass/fail decisions, but also allows prioritization within the "failed" category. However, the quantitative "scoring" should not be arbitrary but rather should be rationally based, as far as possible. - 5. Sketches should be an integral part of the data recording to assure that the survey personnel methodically observe the building. Sketches and photos are invaluable for later reference, and ideally both should be part of the field data - recording because they are complementary. Several of the reviewed methods omitted a sketch or photo. - 6. Age should be explicitly recorded. Although often unavailable, age can be estimated, usually to within a decade or two, on the basis of architectural style, and thus can indicate whether a building is pre or post a specific "benchmark" year in the development of that building type. For example, in San Francisco, wood-frame buildings were required to be bolted to their foundations only since 1948. If a wood-frame building is pre-1948, it is likely to be unbolted. Similarly, unreinforced masonry was not permitted after the adoption of the 1948 building code. Thus, in a survey of hazardous buildings in San Francisco, only pre-1950 buildings were considered. These benchmark years differ by jurisdiction, but are usually locally known or can be determined and should be included in training material for survey personnel. - 7. State of repair should be explicitly noted, as it forces the survey personnel to look for cracks, rot, corrosion and lack of maintenance. Although the state of repair was noted in many of the methods reviewed, it was not formally used in identifying the seismically hazardous buildings. - Occupancy (use) and number of occupants should be noted, using standardized occupancy categories. In the Los Angeles and Long Beach studies, occupancy was used to prioritize buildings for hazard abatement. - 9. Specific observable details of structural members, structural hazards and foundation and site conditions should be itemized in a check-off format, to avoid omission. - 10. Configuration issues should similarly be considered, but their contribution to seismic hazard must be quantified, at least on a weighting basis. Although some of the methods, such as NBS 61, have addressed configuration problems the scoring systems are subjective and are not based on actual damage-related data. - 11. Site aspects of pounding, corner building and adjacencies, and non-structural aspects, need to be similarly noted. Few of the methods have used pounding, corner buildings, or adjacencies as criteria for identifying hazardous buildings, although these problems were noted. Several studies (e.g., City of Redlands, Multihazard Survey, NBS 61) consider non-structural hazards explicitly as part of their criteria. - 12. Personnel should have adequate background and training to understand the earthquake behavior of buildings because many of the data they will be called upon to record will involve subjective decisions. In addition, the survey should be accompanied by detailed guidelines as to what to look for and how to interpret and indicate uncertain data to avoid inconsistencies in the data collection. The guidelines presented in the Multihazard Survey are useful examples. - 13. Data recording should be complete and systematic. A field remote-entry electronic format (i.e., a "laptop" computer) should be considered, although for economic reasons a clipboard has many advantages. - 14. Because information is often lacking, uncertainty considerations must be incorporated into the methodology, although it can be relatively "invisible." For example, building type may be indicated as (circle as appropriate): RCMRF*: definite likely possible unlikely RCSW: definite likely possible unlikely URM: definite likely possible unlikely with weights assigned to each, on the basis of their "contribution" to seismic hazard. If it is likely that the building is an RCSW but possible that it is a URM, then the weighting would result in a higher seismic hazard than if the survey personnel were called upon to provide only one typing. The weighting and arithmetic do not need to be performed in the field, although it may be advantageous to have the weighting known to the field personnel. *RCMRF: Reinforced concrete moment- resisting frame RCSW: Reinforced concrete shear wall URM: Unreinforced masonry Table 1 ORGANIZATIONAL ASPECTS | PROCEDURE/
Source | Building
Groups
Targeted | Survey Area
(Size, number
of buildings,
population) | Number of
Hazardous
Buildings
Identified | Method:
Pass/Fail,
Subjective,
Quantitative? | Supplemental Information Employed? | Explicit Earthquake Definition | Sketch or
Photo? | |---|--------------------------------|--|--|---|---|--|---------------------| | CITY OF
REDLANDS/
Mel Green &
Assoc. (1986) | Bearing
wall URM | Test survey approximately 200 buildings | Appoximately
160 buildings | Quantitative | Aerial photo
Sanborn maps | N | Y | | SAN FRANCISO/
Frank Lew | URM pre-1950 construction | Entire city,
population
700,000 | 2100 from initial 6000 | Pass/Fail | Assessors' files,
Sanborn maps,
Parapet Safety
Program files,
owner feedback | N | N | | ABAG/
J. Perkins
et al. (1986) | WF, URM, RM,
LM, TU, MH | 6,000 square
miles,
population 5.5
million | 4700-5700 | Subjective | Sanborn maps,
Land use maps,
interviews with
local building
office, previous
studies | N | N | | STANFORD
PROJECT/
JABEEC TR 81,
Thurston et al. (1986) | All
27 defined
classes | Phase I
Entire city
population
50,000 | Phase I 4 sub-areas of city identified as most hazardous | Subjective and Quantitative | Palo Alto Comprehensive Plan Building Department input | MMI | Y, sketch | | LOW-RISE/
Wiggins and
Taylor (1986) | low rise | N/A | N/A | Quantitative | N | Maximum
expected
bedrock
acceleration | Y | | PALO ALTO/
F. Herman | URM, pre-1976,
pre-1936, TU | 2000
focus on older
commercial | 325 | Pass/Fail | Sanborn maps
building permits,
previous study,
owners | N | N | Table 1 (continued) | PROCEDURE/
Source | Building
Groups
Targeted | Survey Area
(Size, number
of buildings,
population) | Number of
Hazardous
Buildings
Identified | Method:
Pass/Fail,
Subjective,
Quantitative? | Supplemental Information Employed? | Explicit
Earthquake
Definition | Sketch or
Photo? | |---|--|---|---|---|---|--|--| | OAKLAND/
Arnold, Eisner
(1980, 1984) | URM, WF
ND-RC | Approximately
2000, Oakland
Central Business
District | 377
approximately | Subjective,
no clear
definition of
seismically
suspicious | Y Sanborn maps, building permit, previous study, assessors' files | N | Photo,
building
plan,
sketch | | MULTIHAZARD/
FEMA &
Reitherman
et al. (1984) | Essential facilities, definition left to local jurisidiction All types | About 10,000 buildings since 1975 | Unknown | Quantitative | Maps, construction drawings | UBC zone | Y | | NEW MADRID/
Allen & Hoshall
(1983) | All | Six couties
population
1 million,
approximately
2,400 buildings | N/A | Subjective,
damage states | FEMA data | Y M = 7.6 & M = 8.6 MMI used for damage estimate | N | | OSA HOSPITAL/
(1982) | Hospitals,
all types of
construction | 1077 | 100 in classes
E & F
"low survive
index" | Subjective | Building plans | UBC zone | Unknown | | LOS ANGELES/
(1978-79) | URM | Entire city
population 3
million,
490 square miles | 8,000 approximately | Pass/Fail | Y Sanborn maps assessors' files, previous studies | Not explicit
(large Ep.) | 2 photos
per
building,
sketch | Table 1 (continued) | PROCEDURE/
Source | Building
Groups
Targeted | Survey Area
(Size, number
of buildings,
population) | Number of
Hazardous
Buildings
Identified | Method:
Pass/Fail,
Subjective,
Quantitative? | Supplemental
Information
Employed? | Explicit Earthquake Definition | Sketch or Photo? | |--|--|--|---|---|--|--|---| | UNIVERSITY OF
CALIFORNIA/
McClure (1984) | Area greater
than 4,000
square feet,
human
occupancy | 44,000 square
feet,
approximately
800 buildings | 9,000 square
feet of Poor
or Very Poor | Subjective | Previous studies,
design drawings | MMI > IX | Y | | SANTA ROSA/
Myers (1981) | All types
built before
1958 | About 400
buildings since
1972 | About 90% for further review | Subjective | Plans | N | Photos and sketches | | LONG BEACH/
Wiggins and
Moran (1971) | Pre-1934
type 1, 2, 3 | Entire city,
population
500,000 | 938 | Quantitative | Y
Sanborn | N for LB
study
Y for Wiggins
method | Y | | | | | | | | (maximum
expected
bedrock
acceleration) | | | NBS 61/
Culver et al.
(1975) | SB, DF, SW,
CSF, RF, CSW,
MSW, WF, 11
building
frame types | N/A | N/A | Subjective and
Quantitative
(Capacity Ratio
Rating) Structure
Structure rating
vs. MMI's | Suggest use of original drawings or soil reports, Sanborn maps | UBC zone,
MMI levels
> V | Building
elevations
and site plan
with
adjacencies,
Photo
suggested | ## Table 2 STRUCTURAL ASPECTS | PROCEDURE/
Source | Age/Design
Level/
Building
Practice | Repair | Occupancy
Factor
Definition | Material
Groups | Number of
Stories/
Dimensions | Symm
LFRS | etrical | Member
Propor-
tions | Changes | only
er Bracing | · Co | nnections | Previous
Earthquake
Damage | Renovated | |---|--|--|--|---------------------------------------|---|--------------|---------|----------------------------|----------|--|----------|---|--|--| | CITY OF
REDLANDS/
Mel Green &
Assoc. (1986) | Y | 74. Y 94. (3.)
1. 151. (197
174.) (2.14
174.) (197 | Y | URM | Y
(20) | Ņ | | N
Land
Land Artic | N | | Y | | N | ig to a library
wax aw halls
quantitated | | SAN
FRANCISCO/
Frank Lew | Y | N N | N | URM | Noted,
from
assessor
file | N | | N | N | N | N | ा सम्बद्धाः
स्टब्स्य (स्टब्स्
इ.स.स्टब्स् | N | N | | ABAG/
J. Perkins
et al. (1986) | N · | | Y
noted
for some | Concrete
Steel
Wood
Masonry | Y | N | 1 / Skp | N | N | N | N | | N | If
available | | STANFORD
PROJECT/
JABEEC TR 81,
Thurston et al
(1986) | Y | Y | Y essential facility or large number of occupants, residential, commercial or industrial | Steel
Concerete
Masonry
Wood | Y
noted
number
and
dimensions | Y | | N | Y | Y | Y | | Y | | | LOW-RISE/
Wiggins and
Taylor (1986) | Noted,
implicit
in some of
rating
criteria | Y | Noted | Concrete
Steel
Wood
Masonry | Y | Y | | N | N | Not
explicit,
noted
inadequa
or in-
complete
bracing | | | Y
noted
unrepaired
earthquake
damage | N | Table 2 (continued) | PROCEDURE/
Source | Age/Design
Level/
Building
Practice | State of
Repair | Occupancy
Factor
Definition | Material
Groups | Number of
Stories/
Dimensions | Symmetrical
LFRS | Member
Propor-
tions | Sudden
Changes
in Member
Dimensions | only
Bracing | Connections | Previous
Earthquake
Damage | Renovated | |---|--|--|--|--------------------------------------|--|---------------------------------|----------------------------|--|-------------------------------------|----------------------------------|----------------------------------|-------------------------------------| | PALO ALTO/
F. Herman | Y | | Y
(number
persons) | URM, TU | Noted
but not
formally
employed | N | N | N | N | N | N. | N | | OAKLAND/
Lagorio, Arnold
Eisner
(BSD, 1984) | ·Y | formally | Noted
importance
of structure
117 use codes | URM, TU
ND-RC,
mixed | Noted | N - · · · · · · · | N | Noted | N | N | N | Noted | | MULTIHAZARD/
FEMA &
Reitherman
et al. (1984) | Y | Y | Noted use | Many
classes | Y | Strong
beam, weak
columns | N | N | Y | Roof/wall
and anchor
bolts | N | Y | | NEW MADRID/
Allan & Hoshall
(1983) | Y | N | Y | Steel
Concrete
Masonry
Wood | Y | N | N | N | N | N | N | N | | OSA HOSPITAL/
(1982) | Y
Building
code
jurisdiction | Y | Y Noted building use, Not included in ranking | Concrete
Steel
Masonry
Wood | Y | Y | N | Y | Y | N
accessed
from plans | Not
sure | Y | | LOS ANGELES/
(1978-1979) | Y | Noted
cracks &
mortar
condition | Y
z Table 33A
UBC | URM | Y | Noted | N | N | Noted
from
parapet
program | N | Noted | Noted
from
parapet
program | Table 2 (continued) | PROCEDURE/
Source | Age/Design
Level/
Building
Practice | State of
Repair | Occupancy
Factor
Definition | Material
Groups | Number of
Stories/
Dimensions | Symmetrical
LFRS | Member
Propor-
tiosn | Sudden
Changes
in Member
Dimensions | only
Bracing | Connections | Previous
Earthquake
Damage | Renovated | |--|--|---|---|---|---|---------------------|----------------------------|--|-------------------------|----------------|----------------------------------|---------------| | UNIVERSITY OF
CALIFORNIA/
McClure (1984) | Y | Noted
but not
significar
in rankin | | Concrete
Steel
Wood
Masonry | Number
stories
dimensions
from plans | Y | Y | Y | Y, not
much
found | Sometimes | At a few campuses | Y | | SANTA ROSA/
Myers (1981) | Y | Y | Noted but
not included
in decision | No formal
groups
defined
All types
examined | Y | Y | N | Y | Y | Y | Y | Y | | LONG BEACH/
Wiggins and
Moran (1971) | N | Y | N,
noted but
not formally
employed | RC, S, W,
URM, RM | Y | Y | N | N | N | N | Y i.e., state of repair noted | N | | NBS 61/
Culver et al.
(1975) | Y
noted but
not formally
employed
employed | Y
evidence
of past
damage
repair
noted | N
noted
but not
formally
employed | Concrete
Masonry
Steel
Wood | Noted | Y | N | N | N | Y, if possible | N | Date
noted | Table 3 CONFIGURATION ASPECTS | PROCEDURE/
Source | Soft
Story | Plan
Irregularity | Vertical Irregularity and Variation in Stiffness | Excessive
Openings | Aspect
(Vertical
or Horizontal) | Corner
Building | |--|---------------|----------------------|--|-----------------------|---------------------------------------|---| | CITY OF REDLANDS/
Mel Green &
Assoc. (1986) | N | N | N | N | N | Y can be inferred from site location sketch | | SAN FRANCISCO/
Frank Lew | Noted | Noted | Noted | N | N | N | | ABAG/
J. Perkins
et. al. (1986) | Y | Y | Y | Y | Y | N | | STANFORD PROJECT/
JABEEC TR 81,
Thurston et al. (1986) | Y | Y | Y | Noted | Y | N | | LOW-RISE/
Wiggins and
Taylor (1986) | Y | Y | Y | Y | Y | N | | PALO ALTO/
F. Herman | N | N | N | N | N | N | | OAKLAND/
Arnold, Eisner (1984) | Y | Y | Y | Y | N | N | Table 3 (continued) | PROCEDURE/
Source | Soft
Story | | Plan
Irregularity | Vertical
Irregularity and
Variation in
Stiffness | Excessive
Openings | Aspect
(Vertical
or Horizontal) | | Corner
Building | |---|--|---------------------------------------|----------------------|---|---------------------------------------|---------------------------------------|---|--------------------| | MULTIHAZARD/
FEMA &
Reitherman
et al. (1984) | Y | | Y | Y | Y
large door
width
open side | N | | N | | NEW MADRID/
Allen & Hoshall (1983) | N | | N | N | N |
N | | N | | OSA HOSPITAL/
(1982) | Y | | Y | Y | Y
percent
openings
noted | Y | | N | | LOS ANGELES/
(1978-79) | Not
specific
percent
openings | · · · · · · · · · · · · · · · · · · · | Y | Y | Y
percent
openings
noted | N | | N | | UNIVERSITY OF
CALIFORNIA/
McClure (1984) | Y | | Y | Y | Y | Y | | N/A | | SANTA ROSA/
Myers (1981) | Y | | Y | Y | Y | Υ | | Y | | LONG BEACH/
Wiggins and
Moran (1971) | N | | Y |
Y | Y | Y | | N | | NBS 61/
Culver et al. (1975) | Y, noted | | N | Y, Noted | Y, noted | N | 1 | Street sides noted | Table 4 SITE AND NON-STRUCTURAL ASPECTS | | | SITE RE | LATED | NON-STRUCTURAL | | | | |---|--------------------------------|--|---|---|-----------------|------------------------|---| | PROCEDURE/
Source | Pounding | Neighboring
Building
Collapse | Soil
Conditions | Potential for
Other
Geohazards | Infill
Walls | Interior
Partitions | Cornices,
Overhang
Parapets,
Chimneys | | CITY OF REDLANDS/
Mel Green &
Assoc. (1986) | Noted
abutting
buildings | Noted
abutting
buildings | N | N | N | Noted
type | Y
cornice
parapet
chimney
signs
ornament | | SAN FRANCISCO/
Frank Lew | N | N | N | N | N | N | Noted | | ABAG/
J. Perkins et al.
(1986) | N | N | Not
explicit,
used map
overlay | Not
explicit,
used map
overlay | N | N | N | | STANFORD PROJECT/
JABEEC TR 81,
Thurston et al.
(1986) | Y | Y, noted | Y, noted | Y | Y | Y | Y | | LOW-RISE/
Wiggins and
Taylor (1986) | N | Y
Neighboring
overhang
collapse | Y | N | Y | Y | Y | | PALO ALTO/
F. Herman | N | N | N | N | N | N | N | Table 4 (continued) | $\frac{1}{2} \left(\frac{1}{2} \right) $ | | SITE RELA | ATED | | NON-STRUCTURAL | | | | | |--|---------------------------------------|---------------------------------------|--------------------|--|-----------------|---|---------------------------|--|--| | PROCEDURE/
Source | Pounding | Neighboring
Building
Collapse | Soil
Conditions | Potential for
Other
Geohazards | Infill
Walls | | Interior
Partitions | Cornices,
Overhang
Parapets,
Chimneys | | | OAKLAND/
Arnold, Eisner
(1980, 1984) | N | N | N | N | Noted | | N | Noted | | | MULTIHAZARD/
FEMA &
Reitherman
et al. (1984) | N | N | Y
Soft or hard | Landslide liquefaction Settlement Surface faulting | Y
noted | | N | Braced
or unbraced
or not
present | | | NEW MADRID/
Allen & Hoshall (1983) | N | N | Y | Liquefaction | N | | N | Y | | | OSA HOSPITAL/
(1982) | Noted distance
to nearest building | Noted distance
to nearest building | N | Liquefaction
Landslide | N | | Y noted
URM partitions | N | | | | | | | Alquist-Priolo seismic zone | | - | | | | | LOS ANGELES/
(1978-79) | N | N | N | N | N | | Y | Y, also from
previous
parapet
program | | | UNIVERSITY OF
CALIFORNIA/
McClure (1984) | Not a problem | N | N | Y
Surface faulting
in a few locations | N | | Y | Y, noted but
not significan
in ranking | | Table 4 (continued) | | | SITE RE | LATED | | NON-STRUCTURAL | | | | |--|----------|--|--|--|-----------------------|------------------------|--|--| | PROCEDURE/
Source | Pounding | Neighboring
Building
Collapse | Soil
Conditions | Potential for
Other
Geohazards | Infill
Walls | Interior
Partitions | Cornices,
Overhang
Parapets,
Chimneys | | | SANTA ROSA/
Myers (1981) | Y | N | Not explicit,
all on alluvial
fill | Not explicit,
no potential
for liquefaction
or surface faulting | Y | Y | Y | | | LONG BEACH/
Wiggins and
Moran (1971) | Y | Y | Y | N | Y | Y | Y | | | NBS 61/
Culver et al.
(1975) | Y, noted | Proximity to adjacent buildings noted, separation joints noted | Proximity
to adjacent
buildings
noted | Y Fault rupture liquefaction (implicit fault location noted) | Y, noted
and rated | Y, noted
and rated | Y, noted and rated | | Table 5 PERSONNEL ASPECTS | PROCEDURE/
Source | Survey
personnel
Approximate
person-hours | Local Building
Officials | Professional
Engineers | Registered
Architects | Building
Owners | Emergency
Managers | Interested
Citizens | |--|---|-----------------------------|--|--------------------------|--------------------|-----------------------|------------------------| | | per building | | | | | | | | CITY OF REDLANDS/
Mel Green &
Assoc. (1986) | Not available | Y | Y 12 / Ay 1 | Y | N | N | N | | SAN FRANCISCO/
Frank Lew | 15 min per
building | Y | Y | Y | N | N | N | | ABAG/
J. Perkins | 5 min per
building,
Very little
information
noted | | | Y | Y | | | | STANFORD
PROJECT/
JABEEC TR 81,
Thurston et al.
(1986) | Experienced
structural
engineer | Y | Y | Y | N | | N | | LOW-RISE/
Wiggins and
Taylor (1986) | | Y | Y | Y | N | | N | | PALO ALTO/
F. Herman | 15 min per
building | Y | Y | Y | Y | Y | N | Table 5 (continued) | PROCEDURE/
Source | Survey
personnel
Approximate
person-hours
per building | Local Building
Officials | Professional
Engineers | Registered
Architects | Building
Owners | Emergency
Managers | Interested
Citizens | |---|--|-----------------------------|---------------------------|--------------------------|--------------------|-----------------------|------------------------| | OAKLAND/
Arnold, Eisner
(1980, 1984) | 20 min per
building | Y | Y | Y | N | N | N | | MULTIHAZARD/
FEMA &
Reitherman et al.
(1984) | 1 hour to 3
days per
building | Y | Y | Y | N | Y | N | | NEW MADRID/
Allen & Hoshall (1983) | | N | Y | N | N | N | N | | OSA HOSPITAL/
(1982) | 1-2 days per
building | N | Y | Y | N | N | N | | LOS ANGELES
(1978-79) | 40 min per
building | Y | Y | Y | N | Y | N | | UNIVERSITY OF
CALIFORNIA/
McClure (1984) | 20 min per
building | N | Y | N | N | N | N | | SANTA ROSA/
Myers (1981) | 1/2 day (\$500)
per building | Y | Y | Y | N | N | N | | LONG BEACH/
Wiggins and
Moran (1971) | Professional
engineer | N | Y | N | N | N | N | Table 5 (continued) | PROCEDURE/
Source | Survey personnel Approximate person-hours per building | Local Building
Officials | Professional
Engineers | Registered
Architects | Building
Owners | Emergency
Managers | Interested
Citizens | |------------------------------------|--|-----------------------------|---------------------------|--------------------------|--------------------|-----------------------|------------------------| | NBS 61/
Culver et al.
(1975) | 1 hour per
building | Y | Y | Y | N | N | N | | | | | | | | | |